SOLUTION OF UNSTEADY PROBLEM OF MECHANICAL
VIBRATIONS OF ONE-DIMENSIONAL CHAIN

OF ELASTICALLY COUPLED PARTICLES IN THE PRESENCE
OF AN ISOBARIC DEFECT

V. V. Mazhuga

The one-dimensional chain of elastically coupled particles is the simplest model for studying the
statistical dynamic properties of solid bodies. Schrédinger [1] obtained an analytic solution of the un-
steady problem of uniform chainvibrations and examined the transition from the mechanics of a system
of discrete points to the mechanics of a continuum,

The time dependence of the motion of a linear chain in the presence of an isotopic defect (the foreign
particle differs only in mass from the basic particle) was studied in [2]. Using the generating function
method, he obtained the integral equations of motion of the chain particles, which he solved by iterations,
and then was able to sum the resulting series. In view of the complexity of the formulas, this method can-
not be used in practice to examine unsteady problems of vibrations of a chain with other types of defects,
e.g., the case of presence in the chain of an isobaric defect (the foreign particle differs from the basic
particle only in its interaction with its neighbors), a molecular contaminant, and so on. In the present study
we obtain the solution of the unsteady problem of vibrations of a chain in the presence of an isobaric defect,

1, We shall study the problem of longitudinal vibrations of an infinite chain consisting of particles
of mass M arranged in a straight line and in a state of equilibrium at equal distances from one another,
Particle interaction is examined in the harmonic approximation. We denote the chain force constant by K.
In the chain one node (zero) is occupied by a particle whose interaction is described by the force constant
K, and is different from the interaction between the remaining particles.

The system of equations describing the motion of the particles has the form
ri" (t) - [K + (KU - K) (6’1,'0 + 61‘, _1)] (rﬂrl_ r,;_) i IK + (KO—K) (6'1, 0 + 52, 1)1 (ri— ’1-1) (1.1)

where 1 (i=0, +1, £2 .,.) is the deviation of the i-thparticle from the equilibrium position, and 6in is the
Kronecker symbol.

The initial conditions are
O =g, 0=z (1.2)
Introducing the dimensionless time 7, we obtain
(@) =11+ B— 10 o+ 8, Pl —r) =1L+ B—1E;, o+ 8 )l —riy)
O =ga, r/O)=v/o,t=2(K/M*t=0t B=EK,/K) (1.3)

The solution of this system of linear differential equations with constant coefficients can be sought
in the form

el T

. v . ’ N
(@) =j§w (490,04 (;Z§®i G, v (1.4)

Moscow, Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol, 10, No. 6, pp.
120-123, November-December, 1969, Original article submitted December 16, 1968,

© 1972 Consultants Bureau, a division of Plenum Pulblishing Corporation, 227 West 17th Street, New York,
N Y. I0011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

951



The problem reduces to finding the function &; (j, 7).,
Thus, we shall solve (1.3) with the initial conditions
fr;Q)=a; r/0)=0 (1.5)

2. We solve the problem by the Laplace transform method. If we denote the transform of the func-
tion ri(7) by xj(p), it is not difficult to find

[ B—1) 8 ¢+ 0 1wy (p) — 2, (P)]
—HH@—= D& o+ )z (p)— 2y (p)] — 4%, (p) + 4pa; =10 (2.1)

We examine (2.1) for i =2, 3, 4, ...

Ty — 4P+ 2) e ey, + 4pa, =0

(2.2)
Equation (2.2) is a homogeneous difference equation and its solution is [3]
i—1
& =9 ( Py %r — Py, +4p Z Py-1% r1~v>! ¢, =(VP Fi4+p¥— (VP11 py (2.3)
N y==9
An analogous relation holds for x;j with negative values of the index i:
41
- (2.4)
z =0 (q’—k—ﬁ”—zH Pypofy T 4P 2 ¢—V—1“k—1—~a>
\ B
Here negative values of the particle numbers are dencted by the index k.
Using (2.1) with t=—1, 0, 1 and (2.3), (2.4), after simple algebraic transformations we find
(@9 297 = B, (Boy o+ ur, + 4 3 Pstin)
k =
+ Bj:llf—1 <B(p7k_1xo + @z, -+ 4p Z q)_v—lak—l—v> -+ 4pay
v==—2
5, = [(4p® 1o, —@,_,
P+HB+00,— 1 (2.5)
Passing in (2.5) to the limit as i—« and k—=— =, we obtain x,(p)
oof
1 —_ . -
np)=5 8 3 VFFI=ple 208 (VFFI-pa)
j=—co
A=B VP 1L p(VPFFI—pr—1] (2.6)
Finding ry(r) reduces to calculating the contour integral
1 a-Heo
ro () =3¢ zo (p) FF dp (2.7)

where ¢ is a constant which is larger than the real part of any singularity of x,(p).

The contour integral (2.7) can be expressed in terms of Lommel, Bessel, and trigonometric func-
tions [4]., The Lommel functions of twe independent variables are defined by the relation (see [5] for tables
of the Lommel functions)

v, a= 3 0 () (2.8)
m=g

Replacing the variable in (2.7) using w =p—x/p2+ i, we have

ro(‘r):’z%‘gmo(w) exp [%‘ (w——‘%‘ﬂ dw (2-9)
1
20 (zl;)zm%«ﬁ- { 2 wZ]“a]- + B =1 @ —1) ao}
j=—00
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We can take as the contour ] any circle enclosing the coordinate origin w=0 and not enclosing the
poles of the integrand. Here it is assumed that the coordinate origin is bypassed in the positive direction.

We represent the function XO(W) in the form of the sum of fractions:

4
2 2 nkw , w = 2 —38=r . 1= (QBZ'I__ SB)% (2. 10)

'L__ —
e Wy 2—28

The integral (2.9} breaks down into the sum of integrals of the form

1 1
I = o Sw_lexp —Z—(w— —w—ﬂ dw (2.11)
i
1 w2l . (
Iz:ETS;‘;_—wk'exp [T(w——w—>de (2.12)
i

The integral (2.11} is the Bessel function Jy(7} of zero order {6].

Expanding the denominator in (2.12) into a series, it is easy to show that for 3 <1 the integral (2.12}
equals

1 \Y: -
Iy =(— wk)n U2n+'z [(_ E{) T T:\ (2.13)

For 8 >1 we obtain

28 >‘/z

L= (—wy ) Uy, o [(—w,)" 7, v] ~w," cosr, wo—< o

(2.14)

Calculating sequentially all the integrals, after simple algebraic transformations we obtain ry(7),
We introduce the notations

=8y, 0 2= (o)
leﬁ_}(—y J o+52l?!(—2lﬂ(1)|)12 (- 1,0)' 8 "( %‘)
O()=10G>1), 8()=0(=0) 8()=—1 (< (2.15)
Then with account for (1.4) the solution can be written in the forma:

for g >1

®o (7, 1) =0 (1) 8, +(— D7DV cos gy + AUy g5 g3 (+ 1D — BU, 51 1005 g (67, 7) (2.16)
for B <1

Qoli: Wy ="To(D)&; o + AV, 151 ajo (i1 +2 (% T — BU o 5y a1y 142. 0T ) (2.17m

For the case § =1 the solution was obtained previously in [1].

Now we turn to finding ri(7) for i>=0, Substituting x, from (2.3) into (2.1) for i=1, and x_, from (2.4)
into (2.1) for i=—1, we have

m=sl (B(pi—lxo + i+ 4p E cPv—L“iﬂ-v) (2.18)

V=2

k

T =0 1<B<P Re®0 + 1%y - 4p 4, P .1“1:-1-,) (2.19)

Subtracting (2.19) from (2,18) and passing to the limif as i—~= and k—+-=, we obtain

_ = 4p il (2.20)
71 (p) — 2_, (P) Ml‘i—(ﬂﬂi)(l/[m*-p)‘z]_%&e(l YWV Fi—0p) a;

Using the equation of (2.1) for i=0 and (2.20), we find the transforms x,(p) and x_,(p), and then from
(2.18) and (2.19) we obtain x{{p) and xi{p).
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We find the original by the method used for finding the original of xy(p). We present the final result,
using the notation (1.4).

If 8 >2, then
Di (7, V) ="¥: (1, T) + (— D11 cosl wgr 4 (— DIH11E (1) 8 () cos anv
+ CUyy a5y (727, T) -+ EO () 8 ()) Uyayiy—2g) €70, 1 (2.21)
Here

Filh, =415/ (D — Japif e ai-0¢)2 (O
’f‘i [1—6]',0 +8@E0NI(t—B) olipali— (T)+J2|i|+2]j|_4(7)] +DU2H|+2|]'| (87, T) (2.22)

2
Bl?—1) 28° —38% — B -+ 28v
C="pmr, S0t garreneg g g 50

b ZB(;J;?) 85,0+ Zigzl_nf? 121'1_—521_‘:_25; (t=9,0)
For 1< =2 the solution has the form
Oy, O ="F;(, )+ (=W Ceoswgr'+ CU,_y 1y 5 (0707, 1) + E8 (1) B (1) Usjifea)i) (BT, T (2.23)
In the case 8 <1 we find
Pils D=1, )+ CUpap 515 (07, D+ BODO (N Uy, (T, 1) (2.24)

For 8 =1 the solution was obtained in [1].

3. Example, We shall investigate the statistical dynamic properties of a chain with isobaric defect.
Assume that at the initial time t =0 the velocity of the i-th particle has the given value v{(0), and the veloc-
ities of the remaining particles are random quantities with canonical distribution, We examine the estab~-
lishment of Maxwellian distribution in the given chain, In order to study the approach to the equilibrium
velocity of an individual chain particle, we must find the conditional probability distribution of the velocity
of this particle, defined by the relation

Wa Lo () | 2 0
P o023 0) = LR OL (3.1

Here Wj(vi) denotes the probability density for the value vj to fall in the interval v;, vi+dvi; W,lv;(t)]
vi(0)] denotes the joint probability density for the value of v; to fall in the interval vi(t), v (t) +dv;(t) at the
time t and the interval vj(0), vi(0) + dvi(0) at the time 0. It can be shown [2] that P[vj(t)]vi(0)] has the form

Ploy(t)] v ()] =27 o [L — D2 (1, 1% exp {— Lo () — D3 (G, ) vy (0)12} (3.2)

2o [T— W5 (G, ]
Here the angle brackets denote canonical ensemble averaging.

It follows from (3.2) that the behavior of P[vi(t) | vi(0)] is determined by the behavior of ®i(i, t). It is
not difficult to show that in the formulas obtained for & (i, 7) (we note that 7 =wyt), all the terms approach
zero as 7— <, except the terms containing the cosine., These terms correspond to local vibrations, Conse-
guently, the Maxwellian distribution is established in the system only for 8 =1, In the remaining cases the
conditional probability distribution function does not approach the Maxwellian distribution but depends on
the initial quantity vi(0) and has a periodic nature.

Thus, in the harmonic approximation in the presence of local vibrations in the chain there is notequi-
partition of the energy among all the particles. A similar result was obtained in [2] for a chain with iso-
topic defect.
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